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Abstract:

RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation
(USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide
range of land use, soil, and climatic conditions. RUSLE2’s capabilities have been expanded over earlier versions using
methods of estimating time-varying runoff and process-based sediment transport routines so that it can estimate sediment
transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series
of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2
database. The methods were derived from analysis of 30-year simulations using a widely accepted climate generator and runoff
model and were validated against additional independent simulations not used in developing the index events, as well as against
long-term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2-predicted monthly runoff suggested
that the procedures outlined may underestimate plot-scale runoff during periods of the year with greater than average rainfall
intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2
with a process-based channel erosion model, the resulting set of representative storms was used as an input to the channel
routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral
gully erosion. The method was applied to a hypothetical 5-ha field cropped to cotton in Marshall County, MS, bisected by a
potential ephemeral gully having channel slopes ranging from 0Ð5 to 5% and with hillslopes on both sides of the channel with
5% steepness and 22Ð1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS
indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright  2010
John Wiley & Sons, Ltd.
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INTRODUCTION

The goal of this project was to enhance the RUSLE2
(Revised Universal Soil Loss Equation) model by using
readily available monthly climate data to generate a
representative series of runoff events, allowing expansion
of RUSLE’s conservation planning capabilities beyond
erosivity-driven to runoff-driven phenomena, including
examples such as ephemeral gully erosion or phosphorus
transport. In order to understand this approach, it is
important to understand the overall USLE (Universal
Soil Loss Equation)/RUSLE/RUSLE2 family of models,
especially their evolution in handling runoff.

The USLE (Wischmeier and Smith, 1965, 1978) sum-
marized thousands of years of plot research and became
widely used for conservation planning purposes on agri-
cultural croplands, based on estimating the average
annual soil erosion by water. This was an empirical model
of simple structure that captured the main effects of rain-
fall intensity, soil type, topography, and management on
sheet and rill erosion, with no attempt to account for sed-
iment deposition nor gully erosion. In the early 1980s a
program to develop technology to replace the USLE was
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initiated, resulting in the computer-based RUSLE model,
documented in written form in 1997 (Renard et al., 1997).
RUSLE incorporated significant advances over the USLE
and permitted application of soil erosion estimation for a
great variety of crops and management practices beyond
those in the original USLE data base. RUSLE was sub-
sequently revised to include more advanced scientific
and interface technology and was subsequently delivered
as RUSLE2 in 2002 (Foster et al., 2003; USDA-ARS,
2008). RUSLE2 is currently used by the United States
Department of Agriculture-Natural Resources Conserva-
tion Service (USDA-NRCS) for conservation planning.
RUSLE2 is a ‘hybrid’ model that computes sheet and rill
erosion on a hillslope based on empirical equations driven
by rainfall erosivity, but uses process-based equations
driven by runoff estimates to determine sediment trans-
port capacity, deposition, and sediment enrichment in
clay and organic matter.

Estimation of runoff and the impact of management
on runoff and its ability to carry sediment is probably
the aspect that changed the most in the USLE/RUSLE/
RUSLE2 evolutionary process, with evolution described
in Table I. In the USLE, there was no runoff estimation
and the slope length was defined as beginning at the
top of the hillslope where runoff began, and extending
down to where the sheet and rill flow reaches either a
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Table I. Evolution of the USLE/RUSLE family of models with respect to calculation and use of runoff estimates

Model Delivery Slope length down to Runoff estimate

Initial Updates Based on Used to calculate

USLE 1965 (Agricultural
Handbook 282)

1978 (Agricultural
Handbook 537)

Concentrated flow or
deposition

None None

RUSLE 1991 (initial software
release)

1997 (Agricultural
Handbook 703);

Concentrated flow or
deposition caused
by gradient

Index storm P factor, critical slope
length

RUSLE2 2004 (initial software
release)

2010 (latest update;
on-line
documentation)

Concentrated flow Index storm or daily
values or
representative storm
sequence

Full CREAMS
process-based
transport/deposition

concentrated flow channel or a depositional area. The
limit at the start of the depositional area was required
because such deposition rarely occurred on the plots used
to collect USLE data.

In RUSLE, the hillslope definition was expanded
to include areas of deposition caused by management
changes. This was accomplished by including some of
the process-based routines used in Chemicals, Runoff,
and Erosion from Agricultural Management Systems
(CREAMS) (Foster et al., 1980a,b). Runoff was esti-
mated using a location-specific index storm approach
(described in more detail in the following text) coupled
to a user selected runoff index similar to a curve num-
ber (CN) (Renard et al., 1997, Table 6–5). This index
storm was used to determine critical slope length and to
calculate P factors for such practices as contouring, grass
strips, terraces, sediment basins, and subsurface drainage.
However, deposition on concave slopes for management
systems without contouring was still not considered.

In RUSLE2, this approach was extended to handle
sediment deposition caused by changes in topography,
and the simplified approach in RUSLE was expanded to
include more of the CREAMS science. Hillslopes now
reached from the top where runoff began down to a
concentrated flow channel, and were conceived as being
composed of three layers: topography, soil, and manage-
ment. Allowing each of these layers to be segmented
independently, RUSLE2 represented any complex one-
dimensional hillslope as a series of segments comprising
each unique combination of the slope steepness, soil,
and management layers. With the CREAMS sediment
transport and deposition equations available within every
segment, RUSLE2 could now predict deposition due to
both management changes and topographic concavity,
considering both their impact on runoff generation and
on overland flow transport capacity.

Like USLE and RUSLE, RUSLE2 assumed that sheet
and rill erosion was linearly related to rainfall erosiv-
ity. Direct runoff values have never been part of the
USLE/RUSLE detachment calculations because of, the
good correlation between measured storm erosivity and
unit plot erosion. This means that the impact of soil,
topography, and management on runoff and the resulting
impact of runoff on sheet and rill erosion are subsumed in

the other RUSLE factors (K, soil erodibility; LS, topog-
raphy; and CP, management impacts). There is strong
evidence that knowledge of the actual runoff amounts
can be used to increase the accuracy of USLE/RUSLE
erosion estimates (Kinnell and Risse, 1998), but there is
some question whether the accuracy is better if the runoff
can only be estimated from rainfall values. This approach
would also require recalculating all the other RUSLE fac-
tors to remove the subsumed runoff impacts mentioned
earlier.

The approach of basing erosion solely on rainfall ero-
sivity was not good enough for estimation of remote
deposition occurring in areas with concave topography or
high flow retardance. Therefore, RUSLE2 made runoff
estimates using an index storm and time-varying esti-
mates of the CN based on soil and management charac-
teristics. This RUSLE2-calculated runoff was not used
directly to estimate soil erosion, but rather to deter-
mine the following: if sediment transport capacity has
been satisfied on a given slope segment; to predict sedi-
ment deposition within hillslope segments, channels, and
impoundments; and to predict contour failure and back-
water ponding upslope of barriers and buffer strips.

Currently, RUSLE2 does not predict erosion within
concentrated flow channels. Although it has frequently
been suggested that ephemeral gully erosion may be
of a magnitude comparable to that of sheet and rill
erosion (Poesen et al., 2003), there is no database of
ephemeral gully erosion observations comparable to the
thousands of plot years of research that support the
cropland sheet and rill erosion estimates calculated by
USLE/RUSLE/RUSLE2. Therefore, most efforts to pre-
dict concentrated flow erosion in upland areas have
involved application of algorithms that represent physical
processes involved in detachment and transport (Foster
et al., 1980a; Hairsine and Rose, 1992; Street and Quin-
ton, 2001; Gordon et al., 2007).

The USLE calculations for time-varying phenomena
were done on the basis of either annual values or a
qualitatively defined ‘cropstage period’. In RUSLE, this
was narrowed to half-month periods, which matched the
available erosivity values. In RUSLE2 the calculations
are done on a daily timestep; therefore, they need
daily rainfall and erosivity values, which could come
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from measured daily values or daily values developed
using a stochastic climate generator. Instead of this,
in keeping with the desire for a general conservation
planning model, RUSLE2 developers assumed that only
monthly normal precipitation and erosivity values were
available, so RUSLE2 climate databases included only
monthly averages for precipitation, temperature, and
erosivity density (erosivity per unit rainfall, MJ ha�1 h�1,
a measure of rainfall intensity), plus the location’s
10-year 24-h precipitation amount (P10 year,24 h). The
program then generated the necessary daily values by
disaggregating the monthly data into daily values that
preserved monthly totals, yet varied smoothly from day
to day, resulting in small amounts of precipitation and
erosivity every day of the year.

The daily disaggregation approach worked very well
for the erosion estimates because of the linear relation-
ship between erosivity and erosion seen in the original
USLE plot data, but the small daily rainfall amounts
would result in prediction of zero or very low runoff
using the CN method. In order to get around this limi-
tation for the transport/deposition calculations, RUSLE2
used a precipitation index storm taken as the location’s
P10 year,24 h. The ratio of sediment yield to erosion from
the index storm falling on a given day was used to esti-
mate the actual sediment yield as SYi D Ai ð SYIi/AIi,
where SYi is the daily sediment yield, Ai is the daily ero-
sion, and SYIi/AIi is the ratio of sediment yield from the
index storm to erosion from the index storm on that day.
This approach essentially calculated a sediment delivery
ratio for the slope on each day using the index storm
erosion and yield, and then assumed that same ratio held
for any storm size. It was thought that the uncertainty
associated with this assumption was probably less than
that associated with trying to estimate daily runoff. The
other way of thinking of this approach is that the sed-
iment yield calculated for the erosion and runoff from
the index storm on that day was scaled by the ratio of
each day’s disaggregated erosivity to the erosivity of the
P10 year,24 h rainfall. Details on this approach can be found
in the RUSLE2 documentation (USDA-ARS, 2008).

Through appropriate calibration, this approach pro-
vided reasonable and conservative estimates of sediment
transport and sediment deposition suitable for conserva-
tion planning purposes. However, the runoff generated by
assuming that P10 year,24 h occurs every day was unrealis-
tically high and was not appropriate for driving a physi-
cally based channel erosion model where the dimensions
of the channel are important and vary through time, mak-
ing it critical to have good estimates of the actual runoff
rates. Therefore, a more realistic representative runoff
event sequence was needed in order to drive hydraulically
driven processes such as channel erosion.

The purpose of this paper is to describe new routines
based solely on existing RUSLE2 database informa-
tion that have been implemented in RUSLE2 (USDA-
ARS, 2010) to calculate a representative sequence of
daily runoff events suitable as inputs to physically based
runoff-driven models, such as models to allow estimation

of average annual channel (e.g. ephemeral gully) ero-
sion, or models of phosphorus transport. In order to be
considered successful, the resulting representative storm
sequence must meet the following requirements: (1) in
order to ensure that the erosion results are similar to
those using the current daily disaggregated approach, (1a)
the annual erosivity from these storms must be equal to
the annual erosivity found in the database and (1b) the
general erosivity patterns over the year for the two meth-
ods must match relatively well and (2) in order to ensure
conservation of mass, the annual precipitation depths and
patterns over the year for the two methods (current daily
disaggregated and new representative storm sequence)
must match. The method is validated through compar-
ison to independent generated data and to measured field
data, and use of the method in driving a runoff-based
model is illustrated by coupling the RUSLE2 output for
a hypothetical field to the channel erosion model used in
CREAMS and Water Erosion Prediction Project (WEPP).

RUSLE2 DATABASE VALUES AFFECTING
HYDROLOGY

In order to calculate average daily erosion and sediment
delivery, RUSLE2 normally disaggregates monthly val-
ues of precipitation and erosivity into daily values. These
climatic values do not affect the amount of biomass pro-
duced by a vegetation description, but they do affect the
rates at which surface and subsurface residues and sur-
face roughness degrade over time (USDA-ARS, 2008).
The disaggregation procedure used to convert monthly
to daily values is described in detail in section 3Ð1 of
USDA-ARS (2008). As described there, this process con-
serves the monthly sum of values such as precipitation
and erosivity, and the monthly average of values such as
temperature and erodibility. These disaggregated values
represent the best estimators of long-term average values
and therefore have great utility.

As mentioned above, disaggregation of monthly val-
ues is not the only way that RUSLE2 can get daily
values. Rather, daily precipitation and erosivity values
can be a user-defined set, either entered by hand from
‘real’ measured data or pulled from a climate genera-
tor through the ‘Single-storm erosivity’ input option. In
these latter two cases, discrete user-specified values are
used to determine erosion and sediment delivery, but the
other impacts of climate (e.g. residue decomposition and
roughness degradation) are still based on the long-term
disaggregated values to maintain the robustness of the
approach, and because the results of these effects were
calibrated against the USLE database to ensure a good fit
to the large empirical database. In other words, RUSLE2
can do its calculations based on linkage to a climate gen-
erator, but use of the smoothed disaggregated average
values is more robust and just as valid for conservation
planning purposes (Yoder et al., 2007), except those pur-
poses tied to runoff-driven calculations.

RUSLE2 management descriptions comprise combina-
tions of operation and vegetation descriptions. Operations
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such as tillage, planting, or harvest take place on speci-
fied dates and affect hydrologically important properties
such as surface roughness and residue cover. Vegeta-
tion descriptions specify growth timing and the amounts
and types of residues produced. Residue characteris-
tics include a biomass-cover relationship and a potential
decay rate.

RUSLE2 soil descriptions primarily affect hydrology
through the choice of soil hydraulic class and through
textural effects on soil roughness created by tillage
(USDA-ARS, 2008).

THE CN AND STORAGE INDEX

In order to understand the new approach to developing
representative storms in RUSLE2, it is essential to
understand the underlying CN runoff calculation. This
starts with the storage index (S), sometimes called
‘maximum retention’, which is a transform of the CN
(ASCE, 2009). Using SI units, S (mm) is calculated as:

S D �25400 � 254 CN�

CN
�1�

Conceptually, CN can vary from 0 to 100, correspond-
ing to S varying from 1 to 0. When the ‘initial abstrac-
tion’ is taken as 0Ð2 S, and when S, precipitation P, and
runoff Q, are in the same units, runoff is calculated as:

Q D �P � 0Ð2S�2

P C 0Ð8S
�2�

RUSLE2 internally calculates a CN based on soil,
climate, and management descriptions, varying it on
a daily basis due to changes in soil biomass, soil
consolidation, soil roughness, and soil residue cover.
However, the RUSLE2 CN does not vary through the
year due to variation in the antecedent soil water content,
because RUSLE2 does not include explicit water balance
computations.

While use of the CN approach has received consid-
erable criticism, including especially that CN results do
not vary depending on the storm rainfall intensity (Garen
and Moore, 2005; ASCE, 2009), most objections disap-
pear when the objective of the model is long-term average
behaviour, as is the case for this application in RUSLE2.

DATA TO DERIVE A REPRESENTATIVE RUNOFF
EVENT SEQUENCE

Some erosion models use climate generators to predict
stochastic series of input variables to drive the mod-
els (Bingner and Theurer, 2001; Meyer et al., 2008).
Multiyear outputs of such models are then summa-
rized to predict long-term averages or the likely magni-
tude of events with different probabilities of occurrence.
Although RUSLE2 could take this approach through use
of the daily precipitation/erosivity inputs described pre-
viously, in general RUSLE2 predicts long-term average
sheet and rill erosion and the distribution of that erosion

through a year or a rotation cycle. To be complementary,
a RUSLE2 runoff-driven erosion estimate would need to
be a long-term average of a highly variable sequence of
events. Yu (2002) used a stochastic climate generator to
derive RUSLE climate files. We took that one step fur-
ther by using a stochastic model to generate the initial
rainfall/runoff sets.

In order to meet the objective of developing a repre-
sentative runoff event sequence based on the available
database information, we needed a set of storm rain-
fall/runoff values. These could have been ‘real’ storm
data collected from plots over years, but we chose to use
the output of a stochastic model as the observations to
derive the routines. These ‘synthetic data’ were used for
several reasons: (1) we desired a general approach that
could be used across the continental United States, which
would allow application of the method to a wide range
of users, (2) the data needed to represent a broad range
of management and soil conditions at each location, in
order to adequately demonstrate the impact of manage-
ment and soil on runoff, and (3) the data needed to be
for the plot/field scale modelled by RUSLE.

Generating long-term average runoff estimates using
AnnAGNPS

We chose to use AnnAGNPS (version 3.5; Bingner
and Theurer, 2001) as the stochastically driven model
to generate our rainfall/runoff sets because AnnAGNPS
and RUSLE use compatible management descriptions
and both are operational models supported by available
databases. Although AnnAGNPS and RUSLE2 both use
CN methods to estimate runoff, the models differ consid-
erably in their hydrology. AnnAGNPS uses measured or
generated stochastic climatic input data with a sequence
of wet and dry days and rainfall event sizes that vary
from year-to-year. In contrast, for conservation planning
purposes, RUSLE2 generally uses 30-year monthly mean
rainfall disaggregated into a continuous series of daily
rainfall values, and weather is assumed to be the same
long-term normal every year. AnnAGNPS requires users
to choose a base CN (NRCS, 2004) and daily adjusts that
CN based on antecedent soil water conditions determined
by water balance computations and planting and harvest-
ing events; RUSLE2 calculates a CN internally based
on soil, management, and climatic descriptions, and does
not include an antecedent soil water content adjustment
to the CN.

The AnnAGNPS and RUSLE2 input data for Goodwin
Creek watershed in Panola County, MS, are compared
in Figure 1. The AnnAGNPS input file was a 30-year
synthetic Generation of Weather Elements for Multiple
Applications (GEM) (Harmel et al., 2002) simulation
based on weather statistics from Memphis, TN, and
Greenwood, MS, combined with monthly estimates of
dew point, sky cover, and wind speed interpolated
to the Goodwin Creek watershed from maps in the
AnnAGNPS Climate Atlas. In Figure 1A, the maximum
rainfall occurring on each day during the simulation
is plotted to demonstrate the stochastic nature of the
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(A)

(B)

Figure 1. Daily maximum rainfall (A) in a 30-year GEM synthetic record for Panola County, MS and (B) comparison of measured (1981–2003)
average monthly rainfall at Goodwin Creek Station #1, the 30-year monthly mean of the GEM record, and input values from the RUSLE2 database

AnnAGNPS inputs. However, the 12 monthly means
of that record resemble the monthly rainfall files that
are part of RUSLE2 database for Panola County, MS
(NRCS, 2008), and both are similar to the monthly
rainfall totals measured over 23 years (1982–2003) at
gauging station #1 in the Goodwin Creek experimental
watershed (Figure 1B).

AnnAGNPS was used to transform 30-year synthetic
climate input files into a time sequence of runoff events
for 30 US locations with annual precipitation from 191
to 1420 mm. At each location, a factorial combination
of four soils (soil hydrologic classes A, B, C, and
D) and four managements [tilled fallow, tilled maize
(Zea mays L.), no-till (NT) maize, and pasture] were
simulated. All the locations were in the continental
United States between 30 and 48 °N latitude and 74 and
123 °W longitude. RUSLE2 climate databases (NRCS,
2008) were obtained from the same counties as the
AnnAGNPS locations. In counties within the 11 western
USA states that have multiple RUSLE2 climate files,
sub county zones were selected so that average annual
precipitation in the selected RUSLE2 climate file for
each location differed by no more than 15% from that
in the AnnAGNPS input data set. These combinations
of locations/soils/managements were chosen to provide a

wide range of applicability of the technique to the lower
continental United States.

Results from four of the locations, selected to span a
range of annual precipitation amounts and temperature
regimes, were not used in the development of RUSLE2
prediction equations but were reserved to provide an
independent assessment of prediction efficiency. This
left 416 (26 locations, 4 soils, 4 managements) 30-
year daily AnnAGNPS runoff series as the basis for
developing regression relationships allowing prediction
based on available RUSLE2 databases of: (1) long-term
mean monthly runoff and (2) parameters to describe the
frequency and statistical distribution of runoff events.

PREDICTING AVERAGE MONTHLY RUNOFF

Our technique for predicting monthly runoff values fol-
lowed three steps. First, we sought to account for snow-
pack accumulation and melting by adjusting the RUSLE2
monthly precipitation values. Although snow pack accu-
mulation and melting generally has minimal impact on
rainfall erosivity because of the low precipitation inten-
sities involved with snow, they can have a substantial
impact on monthly runoff. Second, we used values from
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Table II. ANOVA and coefficient estimates for predicting the ratio of Si/SA, the ratio of monthly to annual average S from RUSLE2
climate file parameters

Effecta Numerator degrees
of freedom

Denominator degrees
of freedom

F Valueb Probability > F Estimate

month 12 4932 661.32 <0Ð0001 —
devTið month 12 4932 74.39 <0Ð0001 —
devPaið month 12 4932 162.85 <0Ð0001 —
Tið month 12 4932 152.26 <0Ð0001 —
Paið month 12 4932 162.47 <0Ð0001 —
Residual error — — — — 0.01366

Coefficient estimates (Cij)

Effect (Xj) January February March April May June July August September October November December

Month 0Ð46 0Ð43 0Ð51 0Ð91 0Ð90 1Ð66 2Ð26 3Ð02 1Ð80 1Ð33 0Ð40 0Ð54
devTið month �0Ð039 �0Ð051 0Ð064 �0Ð005 �0Ð037 �0Ð034 �0Ð069 �0Ð037 �0Ð035 �0Ð10 �0Ð080 �0Ð034
devPaið month 0Ð000 �0Ð001 �0Ð004 �0Ð001 �0Ð004 �0Ð005 �0Ð007 �0Ð007 �0Ð010 �0Ð002 �0Ð000 �0Ð000
Tið month 0Ð012 0Ð017 0Ð017 0Ð013 0Ð011 �0Ð013 �0Ð033 �0Ð048 �0Ð025 �0Ð016 0Ð009 0Ð013
Paið month �0Ð004 �0Ð004 �0Ð002 �0Ð002 0Ð001 0Ð003 0Ð004 0Ð003 0Ð003 0Ð002 0Ð001 �0Ð002

The resulting regression relationship for each month i is of the form Si/iA D Ci1 ð X1 C Ci2 ð X2 C . . . C Ci5 ð X5, where Cij is the listed coefficient
for effect j for month i, and Xj is the effect, for j D 1 � 5.
a Refer Nomenclature for definition of abbreviations.
b Ratio of effect mean square to residual error mean square; all statistical tests were made using partial sums of squares, which represent the
contribution of each term to the model after considering all other terms so that the order of term addition does not influence the result.

the RUSLE2 climate database to predict monthly adjust-
ments to the S (Equation (1)) that reflect seasonal vari-
ations in CN due to variations in antecedent soil water
content. Third, we used the results of the first two steps
and other information available in the RUSLE2 climate,
soil, and management databases in multiple regression
analysis to predict the average monthly runoff from the
large pool of rainfall/runoff sets generated by AnnAG-
NPS.

Snowpack accumulation and melting

In limiting ourselves to the data available in the
RUSLE2 climate database, snowpack accumulation was
presumed to depend on precipitation and temperature val-
ues. These values were fit to the effect as modelled by
AnnAGNPS, yielding adjusted RUSLE2 monthly pre-
cipitation amounts, Pai (mm), calculated by subtracting
the predicted change in snowpack (υPsi, mm) from the
average monthly precipitation Pi (mm) available in the
RUSLE2 climate database for each location. Precipitation
was reduced when the snowpack increased, and increased
when the snowpack decreased through the relationships:

υPsi D Pi ð [�0Ð0735 C 0Ð00851 ð Ti

C υTi ð ��0Ð04386 C 0Ð0061 ð Ti�], Ti � 8 �3�

υPsi D 0, Ti > 8

Pai D Pi � υPsi

where Ti is mean monthly temperature (°C) and υTi is the
change in Ti from the previous month (υTi D Ti � Ti�1).
The snowpack increases (υPsi is positive) when υTi is
less than about �2 °C. If υTi is positive, the snowpack
melts and Pai is larger than Pi. If the absolute magnitude

of υTi is small, there is little gain or loss of snow pack.
The main effect of Ti is to amplify the impact of υTi.
The temperature effect inside the brackets of Equation (3)
is multiplied by the monthly precipitation, so effects are
larger in wetter climates. For 30-year AnnAGNPS sim-
ulations at 26 locations, there were 104 location months
with Ti � 8 °C, and this four-parameter model predicted
the average monthly AnnAGNPS changes in snowpack
moderately well (R2 D 0Ð65, n D 104). Predicted υPsi

ranged from �31 to C43 mm, while the AnnAGNPS
results ranged from about �69 to C51 mm, with two
observations <�30 mm, and two above C30 mm. Thus,
the adjustment shifted precipitation in the correct direc-
tion to capture important winter effects, but did not cap-
ture the entire effect for the highest snow locations (e.g.
March in Portland, ME).

Monthly water balance adjustment to S (and CN)

Monthly values of the ratio of average monthly Si,
to that of its annual average, SA, were calculated for
4992 combinations (26 locations, 4 soils, 4 managements,
12 months) from 30-year AnnAGNPS simulations. This
‘S-ratio’ (Si/SA) represents the seasonal variation in the
S as reflected in the AnnAGNPS adjustment to the CN,
which is based primarily on a daily soil water balance. We
then used Proc Mixed (SAS, 1996) to develop a regres-
sion model to predict Si/SA from information already
in the RUSLE2 climate database, including the monthly
rainfall adjusted for snow effects. A 60 degree of freedom
(12 monthly intercepts plus the interactions of 12 months
with four parameters) regression model was highly signif-
icant (R2 D 0Ð99, n D 4992) and the resulting coefficient
estimates, which are appropriate only to northern tem-
perate regions, are presented in Table II. The monthly
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intercepts had the most predictive power, reflecting an
increased S between June and October when antecedent
conditions tend to be dry, and a decreased S from Novem-
ber to March. The four parameters modifying the effect
of month were average temperature and snow-adjusted
precipitation, and the deviations of these monthly val-
ues from their annual averages. These three parameters
(month, temperature, and precipitation) are logical in
defining the expected antecedent moisture impact on the
CN, and therefore on the Si value, as they have a clear
correlation to sunlight and temperature—which in turn
control evapotranspiration—and to rewetting of the soil.

Calculating average monthly runoff from RUSLE2
databases

A monthly runoff index parameter, qi (mm), was
calculated based on Equation (2) as:

qi D �Pai � 0Ð2SRSi/SA�2

�Pai C 0Ð8SRSi/SA�
�4�

where SR is the average annual RUSLE2 S. The parame-
ter qi reflects a combination of soil, management, and
climatic effects on runoff, and equals the runoff that
would be predicted if the entire monthly precipitation
fell as one storm.

A 22-parameter regression model using qi and other
information available in the RUSLE2 databases was fit-
ted to average monthly AnnAGNPS runoff values (26
locations, 4 soils, 4 managements, 12 months), with the
results shown in Table III. The regression model repre-
sented the AnnAGNPS average monthly runoff (R2 D
0Ð90, n D 4992) reasonably well. All retained terms were
significant at P < 0Ð001 after considering all other terms
in the model. Significant terms included qi, SR and Si/SA,
soil hydrologic group, precipitation, erosivity, tempera-
ture, and interactions and time differences between some
of them. The first four of these terms represent the man-
agement and soil effects on the CN. The precipitation and
erosivity values represent rainfall amounts and intensities.
In RUSLE2 application, if the regression model predicted
negative monthly runoff, that monthly runoff value was
set to zero.

In examining the results of this portion of the
process, Figure 2A illustrates the event runoff predicted
by AnnAGNPS for the precipitation inputs shown in
Figure 1A, while Figure 2B shows the average monthly
runoff from the AnnAGNPS simulations and that cal-
culated by the RUSLE2-based regression model for a
hydraulic class C soil cropped to conventional tillage
maize in Panola County, MS. Shown for comparison is
the mean of a 22-year average monthly runoff measured
at gauging station #1 of the Goodwin Creek experimental
watershed. The pattern predicted by RUSLE2 is similar to
the AnnAGNPS predictions and both vary slightly from
to the measured data, which is to be expected as soils and
land uses vary substantially within the 21 km2 Goodwin
Creek watershed (Kuhnle et al., 1996, 2008).

To test the ability of the RUSLE2 regression model to
predict monthly runoff amounts outside the calibration

Table III. Numerator degrees of freedom, F statistic, regression
coefficients, and standard error estimates for predicting monthly

runoff depth Qi (mm) from the RUSLE2 databases

Effecta

(Xij)
DF Fb Soil Coefficient

(Cj)
SE

qi ð qi 1 314 — 0Ð00136 0Ð00008
qið SOIL 4 299 A 0Ð14604 0Ð01384
qið SOIL — — B 0Ð20899 0Ð01397
qið SOIL — — C 0Ð27213 0Ð01404
qið SOIL — — D 0Ð31136 0Ð01417
qið Si/SA 1 238 — �0Ð14526 0Ð00941
Ti 1 82 — �0Ð11496 0Ð01269
Pai 1 41 — �0Ð05910 0Ð00921
Pai ð Ei 1 31 — �0Ð01401 0Ð00254
Ti ð Ei 1 146 — 0Ð06636 0Ð00549
Pai ð Pai 1 181 — 0Ð00106 0Ð00008
Pai ð R 1 116 — �0Ð00002 0Ð00000
EI30 ð Si/SA 1 12 — �0Ð00483 0Ð00139
SR ð P10 year,24 hð SOIL 4 20 A �0Ð00006 0Ð00001
SR ð P10 year,24 hð SOIL — — B �0Ð00005 0Ð00001
SR ð P10 year,24 hð SOIL — — C �0Ð00000 0Ð00002
SR ð P10 year,24 hð SOIL — — D �0Ð00004 0Ð00003
T 1 102 — 0Ð13536 0Ð01338
E 1 657 — �2Ð04475 0Ð07979
R 1 68 — �0Ð02232 0Ð00271
R 1 400 — 0Ð00413 0Ð00021
P10 year,24 h 1 17 — 0Ð02445 0Ð00586

The first 13 degrees of freedom describe monthly variation, while
the last nine degrees of freedom in the model determine a constant
(baseline monthly runoff) for a given climate, management, and soil.
The resulting regression relationship for each month i is of the form
Qi D C1 ð Xi,1 C C2 ð Xi,2 C . . . C C22 ð Xi,16, where Cj is the listed
coefficient for effect j, and Xjj is the effect for month i and effect number
j D 1 � 16. When part of the effect is SOIL, the coefficient value used
depends on the soil hydrologic group, so there are really four choices
each for C2 and C11.
a Refer Nomenclature for definition of abbreviations
b Ratio of effect mean square to residual error mean square; all statistical
tests were made using partial sums of squares, which represent the
contribution of each term to the model after considering all other terms
so that the order of term addition does not influence the result.

data set, the results of the four validation locations
(Table IV) were predicted for all 16 management and
soil type combinations. Taking the AnnAGNPS values
as observed data and RUSLE2 regression (Table III)
predictions as modelled values, the Nash–Sutcliffe model
efficiency coefficient (Moriasi et al., 2007) for monthly
runoff amounts was 0Ð80 (n D 768).

DETERMINING A REPRESENTATIVE RUNOFF
EVENT SEQUENCE

Given estimates of monthly runoff calculated from
regression results, there remains the problem of deter-
mining a suitable sequence of runoff events. This was
approached by determining the mean number of events
per year (EPY) and parameters characterizing the statisti-
cal distribution of runoff event sizes for each combination
of location, soil, and management. Using these values
and postulating that the largest event to be simulated in
each RUSLE2 year would have a 1Ð0-year return period
(RP), a sequence of events was calculated as described in
the following text. The goal of this task was to develop a
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(A)

(B)

Figure 2. Maximum daily runoff (A) during a 30-year simulation predicted by AnnAGNPS from the precipitation shown in Figure 1A falling on
conventional tillage maize grown on a hydraulic class ‘C’ soil in Panola County, MS, and (B) mean monthly runoff calculated from the AnnAGNPS
record, calculated from RUSLE2 regression relationships (Table III), and measured runoff determined by hydrograph separation at Station #1 of the

Goodwin Creek experimental watershed (Kuhnle et al., 2008)

Table IV. RUSLE2 climate parameters for four locations that
were used to test the ability of regression relationships to predict

beyond the calibration data set

County
State

Dare
NC

Tulsa
OK

Ingham
MI

Spokane
(R16–18)

WA

T (°C) 16Ð5 15Ð2 8Ð4 8Ð5
P (mm) 1318 988 786 435
R (MJ mm ha�1 h�1) 5679 4422 1731 188
E (MJ ha�1 h�1) 4Ð1 4Ð1 1Ð9 0Ð5
P10 year,24 h (mm) 191 155 86 46
T (°C) 20Ð0 26Ð3 28Ð0 22Ð5
P (mm) 62 92 57 35
E (MJ ha�1 h�1) 4Ð8 5Ð6 4Ð2 0Ð8

Refer Nomenclature for definition of abbreviations.

storm sequence that would produce the correct amount of
runoff distributed among a reasonable number of events,
matching the total precipitation and erosivity defined in
the RUSLE climate database, the temporal distribution
of that precipitation through the year, and the runoff esti-
mated by the rainfall/runoff set.

Estimate the number of runoff EPY for each location,
soil type, and management

The average number of AnnAGNPS runoff EPY for
each location, management, and soil type combination
that had more than six runoff events within a 30-year
AnnAGNPS simulation was fitted to a 24-parameter
regression model based on information available in the
RUSLE2 climate, soil, and management databases, with
the results shown in Table V. The model accounted for
most of the variability in the annual number of runoff
events in the calibration data set (R2 D 0Ð98, n D 377).
All retained terms were significant at P < 0Ð02, and
included SR, soil hydrologic group, precipitation, ero-
sivity, temperature, and interactions and time differences
between some of these. The number of runoff events will
clearly be a function of precipitation depth and intensity,
as well as depending on soil characteristics, management
influences, and temperature effects on antecedent mois-
ture. In this case, the influence of management entered the
model only through the parameter SR and soil hydrologic
group. In the RUSLE2 implementation, if the regression
equation predicted less than four EPY, the number of
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Table V. Numerator degrees of freedom, F statistic, regression
coefficients, and standard error estimates for predicting the

number of runoff EPY from the RUSLE2 databases

Effecta DF Fb Soil Coefficient
(Cj)

SE

Pa ð Pa 1 15 — 0Ð000029 0Ð000008
P10 year,24 h ð SR 1 847 — �0Ð001863 0Ð000110
SOIL 4 9 A �21Ð286656 5Ð967795
SOIL — — B �18Ð734973 5Ð813829
SOIL — — C �15Ð549807 5Ð788602
SOIL — — D �10Ð747570 5Ð786878
P10 year,24 h ð SRð SOIL 3 79 A 0Ð001424 0Ð000114
P10 year,24 h ð SRð SOIL — — B 0Ð001019 0Ð000122
P10 year,24 h ð SRð SOIL — — C 0Ð000655 0Ð000134
P10 year,24 h ð SRð SOIL — — D 0Ð000000 —
T 1 21 — 1Ð398724 0Ð301712
T ð T 1 33 — �0Ð052799 0Ð009247
R 1 13 — 0Ð021001 0Ð005840
R 1 37 — �0Ð300171 0Ð049659
R ð R 1 73 — �0Ð000075 0Ð000009
E 1 129 — 20Ð351762 1Ð793082
E 1 10 — �5Ð131820 1Ð602032
E ð E 1 5 — �0Ð685443 0Ð293896
Pa ð SOIL 4 15 A �0Ð032987 0Ð010837
Pa ð SOIL — — B �0Ð024888 0Ð010698
Pa ð SOIL — — C �0Ð019167 0Ð010598
Pa ð SOIL — — D �0Ð017178 0Ð010581
Pa ðE 1 26 — �0Ð034492 0Ð006779
Pa ðT 1 44 — 0Ð003171 0Ð000477
Pa ðR 1 66 — 0Ð000534 0Ð000066

The resulting regression relationship is of the form EPY = C1 ð X1 C
C2 ð X2 C . . . C C16 ð X16, where Cj is the listed coefficient for effect
j, Xj, for j D 1 � 16. When part of the effect is SOIL, the coefficient
value used depends on the soil hydrologic group, so there are really four
choices each for C3, C4, and C13.
a Refer Nomenclature for definition of abbreviations
b Ratio of effect mean square to residual error mean square; all statistical
tests were made using partial sums of squares, which represent the
contribution of each term to the model after considering all other terms
so that the order of term addition does not influence the result.

EPY was set to four. The Nash–Sutcliffe model effi-
ciency coefficient for predicting the average annual num-
ber of runoff events for all soil type and management
combinations at the four locations not used in the cali-
bration was 0Ð83 (n D 64).

Determine the gamma function scale and shape
parameters describing daily runoff amounts

A gamma distribution is commonly used to fit rain-
fall data (Haan, 1977) and is generally defined by a
scale parameter � indicating something of the range of
the values, and a shape factor ˛ indicating the shape
of the distribution. In this study, a gamma distribution
was fit using Proc Univariate (SAS, 1996) to each runoff
sequence with more than 6 runoff events within a 30-
year AnnAGNPS simulation. Preliminary analysis indi-
cated that for all location, soil, and management com-
binations the shape factor ˛ was close to 0Ð5, so the
gamma distribution scale parameter � was estimated for
all locations after specifying the shape parameter uni-
formly as 0Ð5. The resulting estimates of � were then
used as the dependent variable in a regression analysis
conducted with Proc Mixed (SAS, 1996). The analysis

Table VI. Numerator degrees of freedom, F statistic, regression
coefficients, and standard error estimates for predicting the scale
parameter (�) of a gamma distribution describing runoff event

depth (mm) from the RUSLE2 databases

Effecta DF Fb Soil Estimate SE

Pa ðPa 1 179 — 0Ð000025 0Ð000002
iRð SOIL 4 12 A 0Ð002422 0Ð001617
SRð SOIL — — B �0Ð002653 0Ð001646
SRð SOIL — — C �0Ð004349 0Ð001842
SRð SOIL — — D �0Ð008028 0Ð002239
Pa ð SR 1 68 — �0Ð000014 0Ð000002
Pa ð SOIL 4 58 A �0Ð004704 0Ð001673
Pa ð SOIL — — B �0Ð003509 0Ð001667
Pa ð SOIL — — C �0Ð002527 0Ð001660
Pa ð SOIL — — D �0Ð001820 0Ð001656
P10 year,24 h 1 68 — �0Ð126194 0Ð015254
R 1 58 — 0Ð009064 0Ð001186
E 1 202 — 6Ð696958 0Ð471168
Pa ð E 1 87 — �0Ð014316 0Ð001531
P10 year,24 h ð R 1 56 — 0Ð000801 0Ð000107
R ð T 1 27 — 0Ð001534 0Ð000294
R ð T 1 16 — �0Ð000038 0Ð000009
T 1 80 — 0Ð323581 0Ð036278
R 1 7 — 0Ð027311 0Ð010691
Pa ð R 1 108 — �0Ð000166 0Ð000016
E 1 150 — �4Ð518450 0Ð368641
E ð E 1 89 — 0Ð762431 0Ð080661

The resulting regression relationship for each month i is of the form
� D C1 ð X1 C C2 ð X2 C . . . C C16 ð X16, where Cj is the listed coef-
ficient for effect j, Xj, for j D 1 � 16. When part of the effect is SOIL,
the coefficient value used depends on the soil hydrologic group, so there
are really four choices each for C2 and C4.
a Refer Nomenclature for definition of abbreviations
b Ratio of effect mean square to residual error mean square; all statistical
tests were made using partial sums of squares, which represent the
contribution of each term to the model after considering all other terms
so that the order of term addition does not influence the result.

resulted in a 22-parameter model (R2 D 0Ð99, n D 377)
involving combinations and interactions of variables cal-
culated from RUSLE2 databases (Table VI). All retained
terms were significant at P < 0Ð01, and included SR,
soil hydrologic group, precipitation, erosivity, tempera-
ture, and interactions and time differences between some
of these. Because the resulting gamma function repre-
sented the distribution of runoff event depths given that
a runoff event had occurred, we would expect that the
results would be dominated by the precipitation values,
which was the case, moderated by the primary factors
controlling the resulting CN. In the RUSLE2 implemen-
tation, if the predicted scale parameter � was <2 mm, �
for that location, soil, and management was set to 2 mm.
The Nash–Sutcliffe model efficiency coefficient for pre-
dicting the gamma distribution scale parameter for all 16
combinations of soil and management at the 4 locations
not used in the calibration was 0Ð83 (n D 64).

Determine the RP of the largest storm
in a representative storm sequence

The default RP of the largest expected annual runoff
event was set to 1Ð0 year. However, in the RUSLE2
implementation, this parameter can be varied by the user
to investigate the effect of larger maximum events.
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Determine the magnitude of the maximum annual runoff
event

The size of a runoff event with a specified RP (year),
was calculated as:

Qev D �1�Pr, ˛� ð � �5�

where Pr D 1 � 1/(RP ð EPY) is the probability that
an event will be smaller than the specified event within
a gamma cumulative distribution function with shape
parameter ˛ and scale parameter �, and �1 indicates we
are taking the inverse of the gamma function. Thus, for
a 10-year RP at a location with 50 EPY, Pr D 0Ð998; for
a 1Ð0-year RP at a location with 50 EPY, Pr D 0Ð98; and
for a 1Ð0-year RP at a location with 25 EPY, Pr D 0Ð96.
As mentioned above, the maximum event was taken as
the 1-year runoff event (Q1 year,24 h).

Determine the representative sequence of runoff events

To derive the sequence of significant runoff events,
the monthly runoff estimates Qi were disaggregated to
daily runoff values using standard RUSLE2 procedures
(USDA-ARS, 2008, section 3Ð1). The ratio of Q1 year,24 h

to the maximum daily runoff amount in the disaggregated
runoff record was then termed RQ and was used in
two ways: (1) as a magnitude factor to convert daily
runoff to representative event runoff, Qev and (2) as the
basis for determining the period between representative
runoff events. The number of events in the representative
storm sequence was determined by rounding down the
quotient of 365 days divided by RQ, and then dividing
365 days by the resulting number of events. Taking the
first event day as the date of maximum disaggregated
daily runoff, the quotient was sequentially added, with
each sum rounded down to determine event dates. On
each event day, the depth of disaggregated daily runoff
is multiplied by RQ to calculate event runoff depth.
This process resulted in the largest event being equal
to Q1 year,24 h, and the sum of all events very closely
approximating the AnnAGNPS results for annual runoff
for the location, soil, and management.

Table VII shows the runoff parameter results for the
four validation sites, comparing the input rainfall/runoff
sets (in this case developed using AnnAGNPS) to the
values resulting from the representative storm sequence
as described previously. These results show very close
matches, not only in the actual calculated runoff values,
but even in the number of storms seen at the various
locations.

CALCULATING EVENT SEQUENCE SHEET
AND RILL EROSION

As RUSLE2 calculates sheet and rill erosion based on
rainfall erosivity rather than runoff amounts, a procedure
was needed to transform the runoff event sequence back
into a sequence of rainfall erosivity events.

Table VII. Thirty-year average AnnAGNPS averages and
RUSLE2 regression predictions of CN, annual runoff, the gamma
distribution scale factor, and the number of runoff events per for
spring plow maize yielding 7 Mg ha�1 on a hydraulic class C

soil at four locations that were not in the calibration data set

County
State

Dare
NC

Tulsa
O
K

Ingham
MI

Spokane
(R16–18)

WA

AnnAGNPS averages
annual rainfall (mm) 1284 1078 739 433
Average CN 86 80 82 79
annual runoff (mm) 292 180 68 28
Gamma distribution � (mm) 11Ð5 12Ð2 5Ð1 4Ð5
EPY (year�1) 50Ð7 29Ð7 26Ð0 12Ð5

RUSLE2 storm sequence approach

annual rainfall (mm) 1316 988 786 435
Average CN 87 85 83 77
annual runoff (mm) 311 192 72 35
Gamma distribution � (mm) 11Ð6 9Ð9 3Ð6 3Ð7
EPY (year�1) 57Ð0 31Ð8 25Ð1 9Ð9

Determine precipitation amount of each event

Event precipitation amounts, Pev, were calculated from
event runoff by using the quadratic formula to solve
Equation (2) for P, using an event Sev defined as the
product of the disaggregated daily SRi calculated from
the RUSLE2 disaggregated CN, times the disaggregated
Si/SA on the event date.

Determine the normal precipitation that occurs between
runoff events

The normal precipitation between runoff events, Pei,
was determined by summing the disaggregated snowpack
adjusted precipitation values between sequential runoff
event dates.

Determine the event erosivity density multiplier

The ratio of normal rainfall between events to each
event’s precipitation was termed the erosivity density
multiplier, edmev D Pei/Pev. Calculating EI30ev by multi-
plying Pev times the disaggregated daily erosivity density
on the event day, Eev, and edmev ensured that the sum of
the rainfall erosivity for the representative event sequence
would approximately equal the normal rainfall erosivity
for the location. In this way, the annual sheet and rill
erosion calculated for the representative event sequence
will be shown to be very close to the normal RUSLE2
estimate.

TEST CASE: RUNOFF AND EROSION
FROM PLOTS AT HOLLY SPRINGS, MS

We demonstrate the procedure of calculating a runoff
event sequence and using it to calculate sheet and rill
erosion with RUSLE2 by representing the erosion plots
reported and discussed in detail by Dabney et al. (2009).
The plots were 22Ð1-m long hillslopes with 5% steepness
cropped to conventional till (CT) or NT cotton from
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Table VIII. Input climate data derived from RUSLE2 databases for Marshall County, MS, USA, and Pa, the RUSLE2 rainfall adjusted
for snowpack accumulation and melting

Annual data

P10 year,24 h �mm� T (°C) P (mm) R (MJ mm ha�1 h�1) E (MJ ha�1 h�1) Pa (mm)

145 15Ð5 1390 6360 4Ð7 1390

Monthly data

Month Ti (°C) Pi (mm) EI30i (MJ mm ha�1 h�1) Ei (MJ ha�1 h�1) Pai (mm) Predicteda Si/SA

January 3Ð1 110 292 2Ð6 109 0Ð57
February 5Ð5 118 358 3Ð0 126 0Ð50
March 10Ð7 145 563 3Ð9 145 0Ð60
April 15Ð9 135 616 4Ð6 135 0Ð83
May 20Ð2 138 725 5Ð3 138 1Ð13
June 24Ð3 93 611 6Ð5 93 1Ð41
July 26Ð3 107 792 7Ð4 107 1Ð50
August 25Ð6 85 557 6Ð6 85 1Ð55
September 22Ð2 94 525 5Ð6 94 1Ð51
October 15Ð9 84 384 4Ð6 84 1Ð24
November 10Ð6 137 550 4Ð0 137 1Ð02
December 5Ð5 144 387 2Ð7 138 0Ð63

— T — — E P —
— 23Ð2 — — 4Ð8 61

Refer Nomenclature for definition of abbreviations.
a Predicted antecedent soil water content adjustment to S based on the regression model reported in Table II.

1991 to 1997 in Marshall County, MS, USA. Table VIII
summarizes the climate parameters for Marshall County,
MS, USA, obtained from the RUSLE2 database. The
climate of Marshall County, MS, was not part of the
calibration data set, but it is similar to the climate of
Panola County, MS, (Figure 1) which was part of the
calibration data set. Comparison of the input monthly
RUSLE2 precipitation data (Table VIII, column 3) with
the snowpack adjusted Pai values (column 6) shows that
in Marshall County, MS, snowpack adjustment resulted
in only a slight decrease in effective precipitation during
December and a slight increase during February.

Results reported are available in the ‘storm sequence’
tab of the ‘ARS Science May 2010’ template of the
latest version of RUSLE2 (USDA-ARS, 2010). RUSLE2
predicted that the CN was higher for CT than for NT,
and the regression models presented in Tables III, V,
and VI predicted how tillage system affects runoff-
related parameters (Table IX). The gamma distribution
scale parameter � varied depending on whether the
long-term average RUSLE2 climate file or the actual
weather observed during the 7-year study was used.
Using long-term average weather, � was 14Ð9 mm for
CT versus 14Ð2 for NT. CT was predicted to have 48
runoff EPY compared to only 43 for NT. Of those events,
17 events spaced 22 days apart were considered to be
significant events in CT, compared with 16 events spaced
23 days apart for NT. The peak runoff event occurred in
December.

Table IX also reports predicted and observed annual
average runoff, sheet and rill erosion, and sediment

concentration values for CT and NT cotton. As reported
by Dabney et al. (2009), using long-term average climate
records RUSLE2 predicted sheet and rill erosion was
76% of measured annual averages for CT, and 114%
of the measured value for NT. However, RUSLE2-
predicted (like AnnAGNPS-predicted) runoff was lower
than observed annual averages for both tillage systems,
so sediment concentration estimates were higher than
measured values. This discrepancy is discussed in the
following text.

Predicting monthly runoff for the test case

Monthly runoff predictions and selected intermediate
results are reported in the bottom section of Table IX.
The monthly variation in the RUSLE2 SRi, values reflect
the monthly changes to the CN calculated internally
by RUSLE2 in response to management operations that
affect surface roughness, surface residue cover, and soil
biomass. For CT, the RUSLE2 CN goes down (SRi

increases) after tillage in April, while for NT, SRi is
highest during the winter after residue addition associated
with the cotton harvest. It is noteworthy that the relative
changes in SRi are smaller than, and out of phase with,
the monthly variation in the Si/SA ratio that reflects
antecedent soil water content effects (Table VIII). The
product SRiSi/SA reflects the combined influences of soil,
management, and climate, including the water balance
adjustment to the CN, and leads to the estimation of qi

and monthly runoff (using Table III).
Figure 3 A shows the monthly RUSLE2 precipitation

and predicted and observed monthly runoff amounts from
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Table IX. Runoff storm sequence parameter estimates based on normal RUSLE2 climate files or the 7-year average monthly rainfall
measured during the study, measured 7-year annual average runoff and erosion, and monthly storm sequence runoff predictions for

CT and NT cotton on hydraulic class C soil on a 5%, 22.1-m long plot in Marshall County, MS

Annual results

Tillage system CT cotton NT cotton

Precipitation record RUSLE2 7 year RUSLE2 7 year
Average RUSLE2 CN 84 84 77 77
Storage index SR (mm) 49 47 78 76
Gamma distribution � (mm) 14Ð9 19Ð6 14Ð2 18.9
Runoff EPY (year�1) 48 37 43 32
Predicted Q1 year,24 h (mm) 40 49 37 45
Gully EPY(year�1) 17 18 16 17
Period between gully events (days) 21Ð5 20Ð3 22Ð8 21.5
Day of peak runoff 12 December 17 March 9 December 9 April
RUSLE2 runoff (mm year�1) 349 293 290 230
RUSLE2 erosion (Mg ha�1 year�1) 44Ð5 63Ð4 6Ð1 9.2
RUSLE2 concentration (ppm) 13 000 21 600 2 110 3 980

Measured runoff (mm year�1) 619 378
Measured erosion (Mg ha�1 year�1) 61.1 5.9
Measured concentration (ppm) 9 870 1 570

Monthly predicted results for normal RUSLE2 climate input

CT cotton NT cotton

Month SRi (mm) SRiSi/SA (mm) qi (mm) Runoff (mm) SRi (mm) SRiSi/SA (mm) qi (mm) Runoff (mm)

January 43 25 93 39 85 49 81 34
February 42 21 110 50 86 43 100 44
March 41 24 130 56 87 51 110 48
April 38 31 110 40 86 71 84 30
May 67 75 71 21 76 86 65 20
June 60 85 25 11 73 100 20 11
July 53 79 35 11 71 110 24 9
August 47 74 22 12 68 110 12 11
September 45 69 31 11 71 110 17 9
October 44 55 35 14 77 95 20 11
November 43 44 95 31 82 84 70 23
December 44 27 120 51 86 54 100 44

CT and NT cotton. Comparison of predicted and observed
monthly runoff patterns helps to explain the underestima-
tion of annual runoff. As part of the discrepancy might
be due to the differences between observed average rain-
fall patterns during the 7 year of observations and the
long-term mean reflected in the RUSLE2 database, we
also present observed 7-year average monthly rainfall and
predictions based on measured rainfall amounts and mea-
sured erosivity density (Figure 3B). Using either long-
term average or measured rainfall resulted in substan-
tially underestimated runoff during the summer, which
is a period of higher than average erosivity density
(Table VIII). It may be that the RUSLE2 relationships
underpredict runoff because the AnnAGNPS predictions
upon which the regression relationships are based do not
reflect the influence of rainfall intensity on CN, which is
sometimes important (Hawkins, 1982; Hjelmfelt, 1991;
Smith, 1997; Jain et al., 2006). The RUSLE2 monthly
erosivity density values are directly proportional to the
average monthly 30-min rainfall intensity (USDA-ARS,

2008) and thus reflect seasonal variation in rainfall inten-
sity at a location. Therefore, we tested an adjustment to
the S based on monthly erosivity density, Ei:

Sei D
(

1 � �Ei � 3�

14

)3

if Ei > 3 �6�

Sei D 1 if Ei <D 3

The dimensionless factor Sei is multiplicative with the
adjustment reflecting antecedent water content, so an
adjusted monthly S was calculated as SeiSRiSi/SA. This
modification reduced the S and increased predicted runoff
when monthly erosivity density exceeded 3 MJ ha�1 h�1.
Applying this adjustment improved the agreement of
measured and predicted monthly runoff (Figure 3C).
When the Sei adjustment was applied with observed
rainfall (Figure 3D), the Nash–Sutcliff efficiency for
predicted monthly runoff was 0Ð51 (n D 24).

Although the adjustment proposed as Equation (6)
gives reasonable values over the range of erosivity
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Figure 3. Monthly rainfall, measured average monthly runoff (solid lines), and predicted monthly runoff (dotted lines) at Holly Springs, MS for CT
(square markers) and NT cotton: (A) predicted runoff based on RUSLE2 long-term average rainfall, (B) predicted runoff based on measured rainfall,
(C) predicted runoff based on RUSLE2 rainfall with SRiSi/SA adjusted using Sei from Equation (6), and (D) predicted runoff based on measured

rainfall with SRiSi/SA adjusted using Sei from Equation (6)

density values encountered in the RUSLE2 database, it
is based on a limited data set and more testing is needed.
The influence of rainfall intensity on infiltration/runoff
partitioning is likely to vary with the amount of residue
cover, the susceptibility of the soil to crusting, and other
factors. The fact that the watershed level comparison
in Panola County did not show an underprediction of
summer runoff (Figure 1) suggests that a rainfall intensity
adjustment may be more important at the plot scale than
at the watershed scale. Nevertheless, the Holly Springs
data set suggests that adjustment of predicted runoff
based on rainfall intensity can improve model efficiency.
Underestimation of extreme events by GEM may be
another contributing factor as several studies have found
that weather generators are better at predicting monthly
means than at matching extreme events (Johnson et al.,
1996; Meyer et al. 2008).

Predicting a runoff event sequence for the test case

Figure 4A shows the disaggregated RUSLE2 erosiv-
ity density for Marshall County, MS and the disag-
gregated daily runoff amounts for CT cotton with and
without the proposed Sei adjustment. Although using
the Sei adjustment and actual measured rainfall data
improved agreement with measured monthly runoff pat-
terns, we chose the normal long-term average RUSLE2
rainfall to demonstrate estimation of a representative
event sequence. Without the Sei adjustment, the single

Figure 4. RUSLE2 disaggregated input erosivity density and predicted
daily runoff with and without the Sei (Equation (6)) adjustment (A), and
the representative event sequence runoff amounts and rates (B) for CT
cotton grown on hydraulic class C soil in Marshall County, MS, USA. The
maximum runoff event depth is equal to Q1 year,24 h (40 mm, Table IX)
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Table X. Illustration of the predicted runoff event sequence for CT cotton grown on a hydraulic class C soil with a 5%, 22.1-m long
slope in Marshall County, MS, USA:

Date Event
runoff
(mm)

Event
duration

(min)

Runoff
rate

(mm h�1)

Pev

(mm)
Eev

(MJ ha�1 h�1)
edmev EI30ev

(MJ mm
ha�1 h�1)

Sheet/rill
erosion (Mg

ha�1)

Concentration
(g m�3)

7 January 27 110 15 48 2Ð7 2Ð1 270 1Ð2 4 420
31 January 31 97 19 52 2Ð8 1Ð6 240 1Ð1 3 570
25 February 37 81 27 58 3Ð3 1Ð9 370 1Ð9 5 120
21 March 40 73 32 61 4Ð0 1Ð8 450 2Ð2 5 550
14 April 31 61 30 56 4Ð5 2 500 4Ð9 16 100
9 May 19 57 20 62 5Ð3 1Ð8 590 7Ð4 40 100
2 June 10 47 13 51 6Ð2 2 650 8Ð1 80 900
26 June 9Ð9 41 14 51 6Ð6 1Ð4 490 4Ð3 43 300
21 July 9Ð8 38 15 48 7Ð4 1Ð8 640 3Ð2 32 300
14 August 9Ð8 44 13 47 7Ð1 1Ð5 500 1Ð7 17 000
7 September 10 48 12 46 5Ð7 1Ð5 380 2Ð4 23 900
2 October 11 58 11 43 5Ð0 1Ð8 390 2Ð5 22 800
26 November 11 65 10 41 5Ð2 1Ð5 330 1Ð4 12 400
19 November 26 69 23 58 4Ð3 1Ð8 440 2Ð8 10 700
14 December 41 110 22 64 2Ð6 1Ð8 290 1Ð7 4 130

Runoff depth (open triangles in Figure 2C), duration, and rate (filled triangles in Figure 2C); corresponding event precipitation (Pev), disaggregated
erosivity density (Eev), erosivity density multiplier (edmev); and resulting rainfall erosivity (EI30ev), event sheet and rill erosion, and apparent
sediment concentration in runoff. Refer Nomenclature for definition of abbreviations.

largest daily disaggregated runoff value for CT cot-
ton was 1Ð9 mm day�1 on 12 December. The ratio of
Q1 year,24 h (40 mm, Table IX) to this maximum daily
runoff value yielded RQ D 21Ð5 days, which is the mag-
nitude factor for transforming disaggregated daily runoff
values to event values. The number of EPY is determined
by rounding down the quotient of 365 days divided by
RQ, yielding 17 events in this example. In order to deter-
mine the sequence of event dates (Table X), the time
between events is determined by dividing 365 days by the
number of events (17), and then sequentially adding the
quotient (21Ð5 days) to the day of the first event, which is
taken as the day of maximum runoff (12 December in this
example). Each sum is rounded down to determine event
dates, leading to intervals between events of either 21 or
22 days. On each event date, the value of disaggregated
runoff (Figure 4A) was multiplied by the magnitude fac-
tor (21Ð5 days in this example) to calculate event runoff
amounts. The event runoff predictions are illustrated with
open triangles in Figure 4B, which are observed to fol-
low the predicted monthly (Figure 3A) and disaggregated
daily (Figure 4A) runoff patterns. The largest of the 17
events in the representative sequence has a runoff amount
equal to Q1 year,24 h (40 mm), but there are several simi-
larly sized (4 > 37 mm) events in the sequence. If the Sei

adjusted runoff had been used, the higher peak disaggre-
gated daily runoff value (2Ð0 mm on 21 March) would
have led to a larger set of events (18 EPY), but the size
of largest event would have remained the same and equal
to estimated Q1 year,24 h.

In the CT cotton example, the sum of the sheet and
rill event erosion estimates for the event sequence in
Table X is 45Ð4 Mg ha�1 year�1 and is within 3% of the
44Ð4 ha�1 year�1 calculated by normal RUSLE2 proce-
dures (Table IX), demonstrating that the event approach
does not significantly alter hillslope erosion estimates.

The apparent sediment concentrations reported in
Table X were determined from the RUSLE2 calculated
event sheet and rill erosion and predicted event runoff.
These values can serve as inputs to a channel erosion
model.

LINKAGE WITH A RUNOFF-DRIVEN MODEL

As the procedure represented previously appears to
provide good runoff and erosion results both for the
validation RUSLE runs and a specific ‘real world’ test
case, the remaining success criterion defined at the
beginning was to show that the representative storm
sequence could be used to drive an existing runoff-based
model.

To demonstrate the ability to link RUSLE2 to a
process-based, runoff-driven channel erosion model, we
chose to use the well known CREAMS formulation (Fos-
ter et al., 1980a) which is essentially the same theory
used in the watershed version of WEPP (Ascough et al.,
1997) and in GeoWEPP (Renschler, 2003) to estimate
channel and ephemeral gully erosion. In the CREAMS
scheme, ephemeral gullies grow by first incising until
they reach a non-erodible layer and then widening on
top of that layer until the shear stress at the base of the
channel sidewall is equal to the critical shear stress, �c,
of the soil (Foster, 2005). Haan et al. (1994) provided a
clear conceptual derivation of the channel erosion theory
represented by the equations used in CREAMS. The the-
ory is based on several assumptions: (1) that Manning’s
equation applies, (2) that the shear stress distribution
around the cross section of a channel can be represented
by a dimensionless distribution, (3) that the soil consists
of a uniform erodible layer with characteristic erodibility
and critical shear stress values overlying a non-erodible
layer at a specified depth, (4) that potential detachment
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rate is proportional to excess shear stress, (5) that actual
detachment is proportional to the unsatisfied transport
capacity of a steady-state runoff rate, (6) that transport
capacity can be determined by the set of equations pro-
posed by Yalin (1963), and (7) that deposition occurs
if sediment load exceeds transport capacity. In appli-
cation, shear stress is calculated for an effective steady
state runoff rate using channel slope, Manning’s n, and
channel dimensions to determine velocity and hydraulic
radius, and the assumption that average shear stress is
proportional to the product of slope, hydraulic radius,
and the unit weight of water. Application of detach-
ment/transport coupling relationships together with the
assumption of a rectangular channel shape leads to the
determination of an effective channel width during the
incision phase that depends on critical shear stress but
not on soil erodibility. The time to reach the non-erodible
layer is determined (depending on available transport
capacity and soil erodibility) and the total time of the
event is divided into a period before reaching the non-
erodible layer and a period after reaching the layer. After
the non-erodible layer is reached, the channel widens,
asymptotically approaching the width where shear stress
at the toe of the channel bank is equal to the speci-
fied critical stress. This scheme allows application of a
rapidly solved analytical calculation of soil loss at sev-
eral cross sections down the channel. Two limitations
of this approach are that the non-erodible layer remains
forever non-erodible, and any deposition of sediment pre-
dicted from one event is neglected in subsequent erosion
calculations

To drive CREAMS, representative event runoff depths
had to be transformed into runoff rates. In RUSLE2, the
duration of the P10 year,24 h index storm is assumed to
be 60 min. We modified this by multiplying this base
duration by the ratio of the annual average erosivity
density (4Ð7 MJ ha�1 h�1 in Marshall County, MS;
Table VIII) to the daily disaggregated erosivity density
on each event day. This adjustment was based on the
logic that runoff occurs at higher rates during periods
of the year with higher than average erosivity density.
The result is illustrated in Figure 4B, where the solid
diamonds (runoff rate mm h�1) are higher than the open
triangles (runoff amount per day) when Eev > 4Ð7 and
are lower than when Eev < 4Ð7 MJ ha�1 h�1.

PREDICTING EPHEMERAL GULLY EROSION: A
HYPOTHETICAL EXAMPLE

We used CREAMS driven by the new RUSLE2 storm
sequence to calculate potential ephemeral gully erosion
for a hypothetical 5 ha field with a silt loam soil cropped
to CT or NT cotton in Marshall County, MS, USA, with
the field bisected by a potential ephemeral gully channel.
Hillslopes on either side of the gully were modelled
to represent the 22Ð1-m long CT and NT erosion plots
simulated previously, so the length of the channel was
about 1130 m. A non-erodible layer was assumed at 0Ð05-
m depth. Computations were done at four ephemeral

Table XI. Predicted ephemeral gully erosion for a 1130-m chan-
nel with various thalweg gradients (s) with CT and NT cotton on
hydraulic class C soil and 5% slope, 22.1-m long hillslopes on

both banks in Marshall County, MS, USA

Input parameters

CT cotton NT cotton

Assumed erodibility
(g N�1 s�1)

21 2Ð3

Assumed �c (Pa) 2Ð1 11
Non-erodible layer

depth (m)
0Ð05 0Ð05

Initial top width (m) 0Ð03 0Ð03

Annual channel erosion

Gully, s D 0Ð005 (Mg
ha�1 year�1)

70Ð6 4Ð3

Gully, s D 0Ð01 (Mg
ha�1 year�1)

85Ð3 12Ð0

Gully, s D 0Ð02(Mg
ha�1 year�1)

93Ð8 17Ð1

Gully, s D 0Ð05 (Mg
ha�1 year�1)

103 21Ð9

gully thalweg slopes (0Ð5, 1, 2, and 5%). Soil erodibility
and critical shear stress, �c, values (Table XI) were
estimated as the average of values suggested USDA-SCS
(1992) for tilled and NT cropland.

Predicted event ephemeral gully and RUSLE2 sheet
and rill erosion are illustrated in Figure 5. It may be
noted that, rather than being associated mainly with the
largest events, predicted ephemeral gully erosion was
concentrated in the first significant runoff events follow-
ing tillage. Total annual ephemeral erosion estimates are
presented in Table XI exceeded average annual sheet and
rill erosion (Table IX) in this hypothetical field for all
cases where channel slope was at least 1%. As no long-
term database ephemeral gully erosion rates are available
for comparison with the simulations, the ephemeral gully
erosion predictions discussed are regarded as conceptual.
Their magnitude suggests that ephemeral gullies make
an important contribution to field scale sediment delivery
and underscores the need for more field measurements of
this process.

SUMMARY AND CONCLUSIONS

RUSLE2 already uses runoff estimates to model transport
and depositional processes on the hillslope as sediment
moves through areas of higher flow retardance or lower
steepness. It does this by routing runoff from an index
storm down the slope every day to calculate a design
sediment delivery ratio, then applying that ratio to the
actual daily estimated erosion to derive a sediment deliv-
ery estimate. This approach enables reasonable and robust
estimation of sediment delivery for the conservation plan-
ning process on the hillslope. This approach cannot be
used, however, when estimating runoff-driven phenom-
ena such as ephermal gully erosion or phosphorus trans-
port, because in such cases the actual absolute runoff rate
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Figure 5. RUSLE2 predicted event sheet erosion for CT and NT cotton
and predicted ephemeral gully erosion for channel grades of 0Ð005–0Ð05.
Tillage events that refill the ephemeral gully in CT management are also

shown

must be known to determine channel size and resultant
flow velocities, shear stresses, sediment transport capac-
ities, etc.

The objective of this study was to develop a process
to provide an average annual representative runoff event
series that could be put into RUSLE2 in place of the
current daily disaggregated climate information. Event
characteristics would be estimated based on information
already available in the RUSLE2 climate database. The
regression relationships to do this were generated using
a series of rainfall/runoff data for extended periods in
multiple locations across the continental United States.
Actual data sets could have been used for this regression,
but because such data sets are limited, the sets were
generated using AnnAGNPS, which uses the GEM as
a stochastic climate generator and a CN approach to
estimate runoff.

Regression relationships developed using available
RUSLE2 database information reliably approximated the
mean monthly runoff, annual runoff event frequency, and
a gamma distribution function scale parameter that char-
acterized 30-year stochastic runoff predictions generated
using the AnnAGNPS model. With these parameters, the
size of the runoff event with any RP can be estimated,

allowing RUSLE2 to be used in risk assessment cal-
culations. By assuming that the largest in a series of
runoff events that cause annual average ephemeral gully
erosion had a 1-year RP and that the depths of the peri-
odic runoff events were proportional to long-term aver-
age daily runoff amounts, the parameters were used to
estimate the dates and sizes of a representative runoff
event sequence within RUSLE2. The largest event in
the sequence is equal to Q1 year,24 h and the sum of all
events approximates the annual runoff for any location,
soil, and management combination. The validity of the
procedure was tested by comparison to the input runoff
values, comparison to current RUSLE erosion estimates,
and by linking the representative event sequence hillslope
runoff, sediment yield, and sediment size distribution to
the CREAMS physically based channel erosion and sedi-
ment transport model, which produced reasonable results.

Comparison of predicted runoff amounts with plot
observations suggested that the procedures developed
may underestimate runoff during periods of higher than
average rainfall intensity. A modified procedure was
suggested that improved the fit to measurements at Holly
Springs, but more testing is needed to determine the
generality of the formulation. The general agreement
between uncalibrated predictions and observations during
winter months, and the correct trend in relative runoff
amounts between CT and NT management, suggests
that the AnnAGNPS and RUSLE2 models adequately
represented the critical processes needed to reflect the
effects of management alternatives on trends in runoff
and erosion.

The methods presented provide a means of linking
of runoff-driven phenomena such as ephemeral gully
erosion with RUSLE2 as the sum of a location-specific
representative sequence of runoff events.
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NOMENCLATURE

E —average annual erosivity density for a
location (erosivity per mm of rainfall, MJ
ha�1 h�1)

Ei —average monthly erosivity density (MJ
ha�1 h�1)

E —the range between the minimum and
maximum monthly erosivity density (MJ
ha�1 h�1)

Eev —daily disaggregated erosivity density on
the date of a runoff event (MJ ha�1 h�1)
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edmev —an erosivity density multiplier used with
Pev and Eev to calculate EI30ev (dimension-
less)

EI30i —RUSLE2 monthly rainfall erosivity (MJ
mm ha�1 h�1)

EI30ev —RUSLE2 rainfall erosivity on date of
runoff event (MJ mm ha�1 h�1)

EPY —number of runoff events per year
Pr —1–1/(RP ð EPY) is the probability that an

event will be smaller than the event with the
specified RP

P —RUSLE2 average annual precipitation for
a location (mm)

Pi —RUSLE2 monthly precipitation depth
(mm)

υPsi —monthly change in snow pack from the
previous month (positive when the snowpack
is increasing)

Pai —RUSLE2 monthly precipitation depth after
adjusting for snowpack (Pai D Pi � υPsi,
mm)

Pa —the range between the minimum and max-
imum monthly snowpack adjusted precipita-
tion

devPai —the deviation in monthly adjusted RUSLE2
precipitation from the location’s average
monthly adjusted precipitation

P10 year,24 h —RUSLE2 10-year, 24-h precipitation depth
for a location (‘index storm’, mm)

Pei —normal snowpack adjusted precipitation
expected between runoff event i � 1 and
event I (mm)

Pev —event precipitation depth calculated from
Qev (mm) and Sev

Q1 year, 24 h —depth of a 24-h runoff event with an
expected recurrence interval of 1 year (mm)

Qev —the event runoff depth (mm),
qi —an index runoff depth defined through

Equation (3) that equals the runoff that would
be predicted if a month’s precipitation fell as
one storm (mm)

R —annual rainfall erosivity for a RUSLE2
location (R D  EI30i, MJ mm ha�1 h�1)

R —the range between the minimum and max-
imum EI30i (MJ mm ha�1 h�1)

RP —return period (year)
RQ —the ratio of Q1 year, 24 h to the maximum

daily disaggregated runoff amount (days)
s —channel grade
S —storage index, a transform of CN through

Equation (1) (mm)
Sei —a proposed adjustment to S defined

through Equation (6) that reflects rainfall
intensity effects on S (dimensionless)

Sev —the S on the date of a runoff event
Si/SA —the ratio of average monthly to annual

average S determined from AnnAGNPS re-
sults (dimensionless)

SR —the annual average S corresponding to the
average annual CN predicted internally by
RUSLE2 for a given soil, management and
climate combination (mm)

SRi —the monthly S corresponding to the aver-
age monthly CN predicted internally by
RUSLE2 for a given soil, management and
climate combination (mm)

SOIL —the soil hydrologic class (A, B, C, or D)
T —average annual temperature for a RUSLE2

location (°C)
Ti —the average monthly RUSLE2 temperature

(°C)
T —the range between the minimum and max-

imum monthly temperature
devTi —the deviation of monthly RUSLE2 average

temperature from annual mean temperature
υTi —the change in Ti from the previous month

(υTi D Ti � Ti�1)
˛ —shape factor of a gamma distributions

of runoff events for all location, soil, and
management

� —scale parameter of a gamma distribution
(mm)

�c —critical shear stress of soil (Pa)
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